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Abstract

Heaped data result when subjects who recall the frequency of events prefer for report-

ing from a limited set of rounded responses or preferred digits over reporting exact

counts. These rounded responses and digit preferences (also referred to as data coars-

ening) could be characterized by reported frequencies (or counts) favoring multiples of

20, reporting counts ending with 0 or 5, or a preference for reporting an even number

over an odd number or vice versa. This mixture of values is a type of measurement

error (pattern of misreporting) that can lead to biased estimation and imprecision in

discrete quantitative data. Sometimes this pattern in data can be explained or under-

stood, but its effect on the statistical inference may be harder to anticipate. A visual

representation of heaped data can be seen in a frequency distribution (histogram)

where the heaps are represented as periodic peaks or spikes within the overall data

layout. Some common examples of heaped count data include smoking (cigarette)

cessation studies, blood pressure (BP) measurements, unemployment duration data,

reported age, reported weight, frequency of sexual intercourse, breastfeeding months,

number of required menstrual cycles before pregnancy, and reported birth weight.

We develop statistical models to model heaped count data using a mixture of

likelihood functions for heaped and nonheaped count data. For the heaped count

data, we consider that the reported outcome is actually censored over the half width

of the heaping multiple. Simultaneously, we consider that nonheaped data follow

the count distribution’s likelihood for exact counts; that they are not censored. The

investigator specifies the heaping multiples over which heaped values are censored via

an interval regression approach in our approach. We also create new Stata commands
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to model these heaped data and use real world data as well as simulated data to

illustrate our approach.
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Chapter 1

Introduction

In many medical applications, reported count data (frequencies of events, symptoms,

behaviors, etc.) are rounded to reflect preferential selection from a limited set of num-

bers. Preference for reporting from a limited response set is referred to as heaping.

Heaped data occur when subjects eschew reporting exact counts in favor of reporting

counts from a limited response set, multiples of common vales, according to a pre-

ferred digit. Such rounded responses and digit preference (also referred to as data

coarsening) could include multiples of 5 or 10, or selecting an even number over an

odd number. When some data reflect an exact count, and other data are heaped, the

mixture of values represents reporting error (pattern of misreporting) that can lead

to biased estimation and imprecision in discrete quantitative data. Sometimes heap-

ing patterns in data can be explained or anticipated, but its effect on the statistical

inference may be more difficult. Heaped data can be seen in a frequency distribution

(histogram) where heaps appear as periodic peaks or regularly spaced spikes within

the overall data layout.

1.1 Literature Review

A source of heaped count data results from cigarette cessation studies where the re-

spondent reports the number of cigarettes smoked in a specific time period (Wang and

Heitjan [2008];Klesges et al. [1995];Lewis-Esquerre et al. [2005]). Participants of these

types of smoking studies, tend to round their reported cigarette counts to multiples of

5, 10, or 20 which may be due to the number of cigarettes in a quarter pack, half pack,

1
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or pack, respectively. Another example where heaping can occur is in the collection

of blood pressure (BP) measurements for which there is a commonly seen terminal

digit preference (Nietert et al. [2006]). In this data heaping is exemplified when BP

readings tend to be recorded in measurements ending in 0 or 5 and even numbers

preferred over odd numbers. Other examples of heaped data include frequency of

sexual intercourse, breastfeeding months (Roberts and Brewer [2001]), duration data

for unemployment (Wolff and Augustin [2003]), self-reported age (Pardeshi [2010]),

number of required menstrual cycles or months before pregnancy (Ridout and Morgan

[1991]), and reported birth weight (Channon et al. [2011]).

Relevant literature include different approaches to addressing heaped count data.

For instance, Wang and Heitjan [2008] proposed a Bayesian proportional odds round-

ing behavior model that was a function of the unobserved true count value and a

latent heaping behavior variable. This latent heaping behavior variable took into

account four values of cigarette counts and rounded the data: exact counts, multi-

ples of 5, multiples of 10, and multiples of 20 (size of cigarette pack). The authors

then compared the model fits and performed model selection in a Bayesian approach

by using certain prior distributions and Bayes factors to estimate parameters in the

posterior distribution. These authors analyzed only univariate count data (no co-

variates) and only considered heaping at multiples of 5. Heitjan and Rubin [1990]

filled-in (imputed) correct ages for data that contained 270 Tanzanian children from

Dodoma. They estimated the rounding probabilities given the observed data and

imputed the ages based on that and assumed that the ages of children were associ-

ated with different types of rounding. Those types of rounding behaviors occurred

in exact age, age rounded to the nearest half-year, and age rounded to the nearest

full-year. Their method of analyses used was multiple imputation with simple and

more complex models. Thavarajah et al. [2003] encountered heaping for BP readings

with preference of 0, 2, 4, 6, 8, or an odd number as the measurements last digit. The

2
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authors used a χ2 test to examine the tendency for zero digit preference and nonzero

digit preference for certain demographic information, along with a logistic regression

to analyze zero bias.

Roberts and Brewer [2001] introduced two more simple, yet general approaches

to heaping in discrete count data. One approach referred to as "‘neighbor difference"’

used the differences between the frequency of the response and the mean of the

two neighboring (nearest) frequency responses. The other approach, called local

mode, takes into account the mode of the response in binary fashion. The authors

propose using the sum of the values for either choice (neighbor difference or local

mode) for a set of responses. Their method allows for a measure of the magnitude of

heaping and hypothesis testing for the presence of heaping in the data by a p-value.

For both approaches to work, the investigative team would need to start with some

hypothesized heaped (multiple) values and maximum discrete count response based

on the given data. The authors demonstrate their approach on an interviewed study

regarding the number of drug partners each subject had. The interviewers questioned

the subjects two different ways, one method using a numerical estimate and the other

using a partner elicitation method. The numerical method simply required subjects to

estimate the number of drug partners, while the partner elicitation method required

subjects to recall drug partners individually and then count each partner. Based on

the data, heaping was apparent for multiples of 5. The authors then compared the

two methods (numerical and elicitation) while using their proposed heaping analysis

and concluded that by using the subjects’ estimation of drug partners, heaping was

more likely to be apparent than using the partner elicitation method.

Digit preference or heaping in the study of fecundity arises from retrospective

reporting of womens time-to-pregnancy (TTP), which are commonly rounded to 6, 12

or even 3 cycles (Ridout and Morgan [1991]). Ridout and Morgan [1991] assumed that

the TTP data had an underlying beta-geometric distribution. Under this assumption,

3
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they showed that this heaped data did not change the conclusions from fitting a beta-

geometric distribution, but absorbed the lack of fit. With similar data, Price and

Seaman [2006] used a computationally intensive approach, that used Markov chain

Monte Carlo (MCMC) methods, to model fecundity. These authors took a Bayesian

approach by using a hierarchically centered generalized linear mixed model, but the

MCMC method was complicated and limited use of the full conditional distribution.

This model was able to compute posterior distributions and interval estimates of all

of the regression parameters.

Some studies that used naive approaches included a study involving rural areas

in India where a door-to-door open-ended questionnaire was used for data collection

(Pardeshi [2010]). Digit preference and age heaping were shown in these data with

a preference for ages ending in 0, 5, or both. The author used Whipple’s index and

Myers’ blended index to measure age preference but these indices exclude childhood

and old age respectively. The Whipple’s Index measures the extent of preference for

ages ending in 0, 5, or both by using age responses between 23 and 62 and calculating

a value based on Whipple’s Index formula which has a minimum value of 0 and

maximum of 500. A value of 0 indicates that ending digits 0 and 5 are not reported,

a value 100 indicates no preference for ending digits of 0 and 5, while a value of 500

indicates that ending digits of 0 and 5 were always reported. Pardeshi [2010] describes

the index accuracy for the age distribution as: < 105 = highly accurate; 105 − 109.9

= fairly accurate; 110−124.9 = approximate; 125−174.9 = rough; and ≥ 175 = very

rough. While the Myers’ blended index (Myers [1940]), considers preferences of ages

ending in any of the ten digits (0 to 9), creating an overall age accuracy score. This

index assumes that the population is equally distributed among the different ages and

has a mininum value of 0 (no heaping) and a maximum value of 90 (same reported

ending digit for entire population). The Whipple index was also used to measure

age heaping in cancer patients (Denic et al. [2004]) and amongst women (married

4
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versus unmarried) using population surveys spanning 400 years by (Foldvari et al.

[2012]). The Whipple’s Index has a major limitations: only considering preferences

of measures for 2 digits, 0 and 5; considers only the interval of ages between 23 and 62;

handle only a single year worth of data. The Myers’ Blended Index have no theoretical

basis, is not suitable for group data, and does not take into account any other forms

of heaped bias. Lastly, Channon et al. [2011] just calculated percentages of low birth

weight (LBW) in retrospective studies from 6 developing countries. Preference of

rounding (from memory or recorded health card) was found to occur in the nearest

digit for birth weight in multiples of 100g and 500g. The authors state the goal of the

study was not to propose a method to more accurately redistribute the birth weights

heaped on 2,500g, but to demonstrate the effect of heaping on LBW estimates. These

studies lacked the use of statistical modeling and predictions.

Chapter 2 describes our new method for handling heaping in count data and

also introduces new interval-censored regression models that may be used to ana-

lyze heaped count data in Section 2.1. The Data Analysis chapter will exhibit 4

sets of analyses using our new method by analyzing data from an NHANES study

in Section 3.1 of cigarette counts, a National Institute of Mental Health (NIMH)

multisite HIV (human immunodeficiency virus)/STD (sexually transmitted disease)

prevention trial of frequency of sexual activity in Section 3.2, a simulation study

involving heaped poisson data in Section 3.3, and finally score test derivatives for

interval-censored regression models are discussed in Section 3.4. In Chapter 4 we

give a complete discussion of our results and future work.

5
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Chapter 2

Methods

We propose statistical models to model heaped count data using a mixture of like-

lihood functions for heaped and nonheaped count data. We also create new heaped

count data regression commands in Stata statistical software. We consider the re-

ported outcome is actually censored over the half width of the heaping multiple for

heaped count data. We also consider that nonheaped (not censored) data follow the

count distribution’s likelihood for exact counts. For example, for heaped data which

are heaped at multiples of 20, the counts that are reported of non-multiples of 20

will be treated as exact results, such that P (Y ∈ {y − ⌊20/2⌋, y + ⌊20/2⌋}) for those

counts with multiples of 20, instead of P (Y = y) for exact counts. The investigator

should specify the heaping multiples over which heaped values are censored via an

interval regression approach for our new method.

2.1 Models

For the following models, let yLi, yRi represent the right and left endpoints of interval-

censored count observations, respectively. We have

yLi = max{0, yi − ⌊hi/2⌋}

yRi = yi + ⌊hi/2⌋

hi = hj = max
j=1,...,H

I(yi mod hj = 0)

where ⌊hi/2⌋ is the half width of the heaping interval, and h1 = 1. If all observations

are exact (noncensored, no heaping), then H = 1 and these formulas simplify to that

6
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of Poisson, generalized Poisson, and Negative Binomial regression.

Poisson Model

Poisson regression analysis is often used to analyze response variables comprising

count data. This distribution describes the probability of the number of event occur-

rences and the expected number of occurrences modeled through explanatory vari-

ables. For a random variable Yi, we have a response vector Y = (Y1, . . . , Yn)T , where

n is the sample size and Yi, Yj are independent and identically distributed (iid) for

any i 6= j. An invertible link function is used to describe the relationship between the

linear predictor xiβ = ηi to the expected value of the responses µi via µi = exp(xiβ)

where xi is a covariate vector and β is a vector of regression parameters to be esti-

mated. The probability mass function is given by

f(yi;µi) =
µyi

i e
−µi

yi!
, yi = 0, 1, 2, . . . , µi > 0. (2.1)

The Poisson model has some strong assumptions, one being equidispersion; that is,

that the mean (µi) and variance (µi) of the outcomes are equal for a given set of

covariates. When the variance exceeds the mean (overdispersion), or the variance is

smaller than the mean (underdispersion), the Poisson assumption is violated.

In practice, equidisperson V ar(y)/E(y) = 1 is rarely reflected in data and using

the Poisson model which carries this assumption leads to poor estimates of the vari-

ance, and, thus, to poor inference. In most situations, the variance (V ar(y)) exceeds

the mean (E(y)) for a given count variable Y . This occurrence of extra-Poisson vari-

ation is known as overdispersion V ar(y)/E(y) > 1 (see, for example, Dean [1992]).

Lee and Nelder [2000] describe two approaches to model overdispersed count data

(i) Quasi-likelihood approach;

(ii) Include a random-effect model

7
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where the quasi-likelihood approach involves the extension of the parametric model

by extra parameters to allow for a more general variance structure. In situations

for which the variance is smaller than the mean, data are characterized as being

underdispersed. Puig and Valero [2006] state that dispersion is a measure of depar-

ture detection from the Poisson distribution which can be examined in various ways,

Fisher overdispersion test, zero-inflation index, etc. Modeling overdispersed or un-

derdispersed count data using inappropriate models can lead to underestimated or

overestimated standard errors and misleading inference.

We use coefficient estimates and standard errors to obtain the maximum likelihood

method. For a random sample of observations y1, y2, . . . , yn, we know that the Poisson

log-likelihood function is

L =
n
∑

i=1

{

yi ln(µi) − µi − ln Γ(yi + 1)
}

(2.2)

We propose, for a random sample of heaped observations, the log-likelihood function

(interval-censored regression) is given by

p1i = ΓI{yLi, µi} = 1 − P (Y ≤ yLi − 1|Y ∼ Poisson)

p2i = ΓI{yRi + 1, µi} = 1 − P (Y ≤ yRi|Y ∼ Poisson)

where ΓI is the regularized incomplete gamma function and yLi, yRi represent the

right and left censored observations, as stated above, respectively. Therefore, the

interval-censored Poisson regression model has the log-likelihood equal to

L =
n
∑

i=1

ln(p1i − p2i). (2.3)

Generalized Poisson Model

Consider the generalized Poisson (GP) distribution having a probability mass function

f(yi;µi, α) =
µi(µi + αyi)

yi−1e−µi−αyi

yi!
, yi = 0, 1, 2, . . . (2.4)

8
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where α is the dispersion parameter, µi > 0, max(−1, −µi

4
) < α < 1, and µi =

exp(xiβ). When α → 0, the GP distribution reduces to the Poisson distribution. This

distribution can be used to analyze equidispersed, overdispersed, or underdispersed

count data. The mean and variance for the generalized Poisson distribution (Hardin

and Hilbe [2012]) is

E(Yi) =
µi

1 − α
, and

V ar(Yi) =
µi

(1 − α)3
.

For a random sample of observations y1, y2, . . . , yn, the GP log-likelihood function is

L =
n
∑

i=1

{

lnµi + (yi − 1) ln(µi + αyi) − µi − αyi − ln Γ(yi + 1)
}

. (2.5)

Consul and Famoye [1992] and Consul [1989] extensively studied this distribution

and illustrated that covariates can be introduced into a regression model via the

relationship

log
µi

1 − α
=

p
∑

r=1

xirβr, (2.6)

where xir is the ith observation of rth covariate, p is the number of covariates in the

model, and βr is the rth regression parameter. We propose, for a random sample

of heaped observations, the log-likelihood function (interval-censored regression) is

given by

p1i = ΓI{yLiα, µi}

p2i = ΓI{(yRiα) + 1, µi}

where ΓI is the regularized incomplete gamma function. Therefore, the log-likelihood

function suitable for heaped data using a GP model is

L =
n
∑

i=1

ln(p1i − p2i). (2.7)

9
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Negative Binomial Model

Suppose we have count data that is overdispersed or underdispersed, therefore a Pois-

son regression model is not appropriate. Therefore, a model that’s been extensively

used by researchers over time, the negative binomial distribution (Lawless [1987];Dean

and Lawless [1989]) is considered. In each trial th e probability of success is p and

of failure is (1 − p). The general probability mass function of the negative binomial

(NB) distribution is

f(y;α, p) =
Γ(y + 1

α
)

Γ(y + 1)Γ( 1
α
)
p1/α(1 − p)y, y = 0, 1, 2, . . . (2.8)

where α is the dispersion parameter. When α → 0, this reduces to the Poisson

distribution. The mean and variance for the negative binomial distribution is as

follows

E(Yi) =
1 − p

αp
, and

V ar(Yi) =
1 − p

αp2

=
p− p2 + p2 − 2p+ 1

αp2

=
p(1 − p) + (p− 1)2

αp2
.

The negative binomial can be altered by using the log-linear specification g(x; β) =

exp(xTβ) (Lawless [1987]) where x is the p x 1 vector of explanatory variables and

β is a vector of regression parameters. Lawless [1987] states that a Poisson model

would stipulate that the distribution of Y |x is Poisson with mean equal to µ(x) =

T{g(x; β)}. Based on this information, the negative binomial regression model is

f(yi;α, µi(x)) =
Γ(yi + 1

α
)

Γ(yi + 1)Γ( 1
α
)

(

1

1 + αµi(x)

)1/α( αµi(x)

1 + αµi(x)

)yi

, yi = 0, 1, 2, . . . ,

(2.9)

where α is the dispersion parameter. Here we use a common re-parameterization

using p = 1
1+αµ

where p relies on covariates x, which results in the mean and variance

10
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of Y as

E(Y |x) = µ(x)

V ar(Y |x) = µ(x) + αµ2(x)

Therefore, we have Y ∼ NB(µ(x), α). Again, when α → 0 the mean and variance

reduces to the the mean and variance of a Poisson model. For a random sample of

observations y1, y2, . . . , yn, the NB log-likelihood function is

L =
n
∑

i=1

{

ln(Γ(yi + 1/α)) − ln(Γ(yi + 1)) − ln(Γ(1/α)) + (1/α) ln
(

1

1 + αµi(x)

)

+(yi) ln
(

αµi(x)

1 + αµi(x)

)}

. (2.10)

We propose, for a random sample of heaped observations, the log-likelihood func-

tion (interval-censored regression) is given by the following components

p1i = BI [yLi, α, 1/(1 + (αµi)]

p2i = BI [yRi + 1, α, 1/(1 + (αµi)]

where BI is the three-parameter incomplete beta function. Therefore, under the NB

model for heaped data, we have the log-likelihood function

L =
n
∑

i=1

ln(p1i − p2i) (2.11)

Zero-Inflated Models

Sometimes, there exists an excess of zeros in count response data, and Poisson (and

other discrete) distribution models may fail in fitting such data. This excess of zeros

is called zero-inflation which is shown in falls data (Ullah et al. [2010]), number of

defects in manufacturing (Lambert [1992]), number of cubes in the test of tower

building for motor development (Cheung [2002]), etc. Due to an increased interest in
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zero-inflated models, there has been many other studies of statistical analysis using

zero-inflated data, Ridout et al. [1998] summarized some literature and cited examples

from agriculture, econometrics, patent applications, road safety, species abundance,

medical consultations, use of recreational facilities, and even sexual behavior. Hardin

and Hilbe [2012] describe the two origins of zero outcomes: individuals who do not

enter into the counting process; individuals who enter into the counting process and

have a zero outcome. Hence the model must be separated into different parts, one

consisting of a zero count yi = 0 and the other consisting of a nonzero count yi > 0.

P (Yi = yi) =















Pb(yi = 0) + (1 − Pb(yi = 0))Pc(yi = 0) yi=0

(1 − Pb(yi = 0))Pc(yi) yi=1,2,. . .
(2.12)

where Pb is the binary distribution for the probability of a zero outcome, and Pc is

the discrete probability function for the count outcomes. Johnson et al. [1992] and

Lambert [1992] extensively studied the zero-inflated Poisson distribution (ZIP) which

is used in many applications such as econometric counts of purchasing behaviors,

counts of sexual behavior episodes, etc. (Ridout et al. [1998]). In our approach, the

zero-inflated heaped count data log-likelihood for the Poisson, generalized Poisson,

and negative binomial can be specified as

L =
∑

i∈S

ln
[

Pb(yi = 0) + (1 − Pb(yi = 0))Pc(yi = 0)
]

+
∑

i/∈S

ln
[

(1 − Pb(yi = 0))(p1i − p2i)
]

(2.13)

where S is the set of zero outcomes, Pb(yi = 0) is the binary model of zero outcomes

usually modeled as logistic regression based with specified covariates, and p1i and p2i

such that Pc(yi) = p1i −p2i are as given in the previous sections. The probability of a

zero outcome Pc(yi = 0) are respectively given by exp(−µi), exp(−µi), and αµi/(1 +

αµi)
1+1/α for the Poisson, generalized Poisson, and negative binomial distrbutions.

12
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Therefore, the heaped zero-inflated poisson regression model is

L =
∑

i∈S

ln
[

Pb(yi = 0) + (1 − Pb(yi = 0))(exp(−µi)
]

+
∑

i/∈S

ln
[

(1 − Pb(yi = 0))(ΓI{yLi, µi} − ΓI{yRi + 1, µi})
]

(2.14)

where Pb is the binary distribution for the probability of a zero outcome. And, the

heaped zero-inflated GP regression model is

L =
∑

i∈S

ln
[

Pb(yi = 0) + (1 − Pb(yi = 0))(exp(−µi)
]

+
∑

i/∈S

ln
[

(1 − Pb(yi = 0))(ΓI{yLiα, µi} − ΓI{(yRiα) + 1, µi})
]

(2.15)

where Pb is the binary distribution for the probability of a zero outcome. Finally, the

heaped zero-inflated NB regression model is

L =
∑

i∈S

ln
[

Pb(yi = 0) + (1 − Pb(yi = 0))
(

αµi

(1 + αµi)1+1/α

)]

+
∑

i/∈S

ln
[

(1 − Pb(yi = 0))(BI [yLi, α, 1/(1 + (αµi)]

−BI [yRi + 1, α, 1/(1 + (αµi)])
]

(2.16)

where Pb is the binary distribution for the probability of a zero outcome.
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Chapter 3

Data Analysis

In this chapter, there are four sets of data analysis using our new method of interval-

censored regression for heaped count data. In Section 3.1, we present new Stata

commands for modeling heaped count data as well as a motivating example using

cigarette count data from the National Health and Examination Survey (NHANES

2009-2010) from the Centers for Disease Control and Prevention (CDC). We then

illustrate our new regression model, in Section 3.2, using discrete count data from the

EBAN study of African American HIV serodiscordant (heterosexual) couples from a

National Institute of Mental Health (NIMH) multisite HIV prevention trial. Next, we

compare empirical (observed) probabilities, Poisson probabilities, and Heaped Poisson

probabilities in a simulation study (see Section 3.3). And finally in Section 3.4, we

discuss the derivations of score test statistics for our interval-censored regression

models for heaped count data.

3.1 Modeling Heaped Cigarette Count Data

Introduction

In this section, new Stata commands for modeling heaped count data are presented

for the Poisson, generalized Poisson, Negative Binomial regression models as well as

their Zero-Inflated versions. We illustrate our method of interval-censored regression

for heaped count data by analyzing cigarette count data from the National Health

and Examination Survey (NHANES 2009-2010) from the Centers for Disease Control
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and Prevention (CDC) while using the new Stata commands. The Stata commands

are implemented through the use of the Stata optimization ml command where we

used the lf method. This method requires programs to be written as likelihood func-

tions to allow the software to speed up the computation of numerical derivatives.

For the creation of the new Stata commands, we gave Stata our interval-censored

regression likelihood functions from Section 2.1 and allowed the software to numeri-

cally optimize the derivatives. These commands will be submitted to Stata for public

implementation and usage.

Stata Syntax

The accompanying software includes the command files as well as supporting files for

prediction and help. In the following syntax diagrams, unspecified options include

the usual collection of maximization and display options available to all estimation

commands. In addition, all zero-inflated commands include the ilink(linkname) to

specify the link function for the inflation model.

The syntax for specifying a model for heaped count data is given by

heapreg depvar
[

indepvars
] [

if
] [

in
] [

weight
] [

, exposure(varname_e ) offset

constraints(constraints) vce(vcetype ) level(#) irr noheader poisson gpoisson

nbreg width() heap() hausman
]

with options poisson, gpoisson, and nbreg for each discrete distribution above,

respectively.

While the syntax for heaped zero-inflated count data is given by

ziheapreg depvar
[

indepvars
] [

if
] [

in
] [

weight
]

inflate(varlist
[

,offset(varname)
]

| _cons)
[

, exposure(varname_e )

constraints(constraints) vce(vcetype ) level(#) irr noheader poisson gpoisson
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nbreg width() heap() hausman vuong
]

with options poisson, gpoisson, and nbreg for each discrete distribution above,

respectively.

A Durbin-Wu-Hausman test, first proposed by Durbin, later modified by Wu and

Hausman (Davidson and MacKinnon [1996]) examines to see if there is a significant

difference between two models, a more efficient model (heaped) against a less efficient

(regular) but consistent model. This occurs to make sure that the more efficient model

also gives consistent results. Under the null hypothesis of this test, the estimated

coefficients (β̂p,β̂th) are consistent only if β̂p (regular model) is efficient, while under

the alternative hypothesis β̂th (heaped model) is consistent. Therefore, we have test

statistic of

a = (β̂p − β̂th)(Vth − Vp)−1(β̂p − β̂th)−1

where Vth and Vp are consistent estimates of the covariance matrices of β̂th and β̂p

respectively. If a significant p−value results, the null hypothesis is rejected therefore

meaning that the more efficient model, our heaped version, is better. While, non-

significant Hausman test statistic indicate no preference for either model. Results

of this test are included in a footnote to the estimation of the model when the user

includes the hausman option in any of the commands.

A Vuong test, see (Vuong [1989]), evaluates whether the regression model with

zero-inflation or the regression model without zero-inflation is closer to the true model.

A random variable ω is defined as the vector lnLZ − lnLS where LZ is the likelihood

of the zero-inflated model evaluated at its maximum likelihood estimator (MLE) and

LS is the likelihood of the standard (non-zero-inflated) model evaluated at its MLE.

The vector of differences over the N observations is then used to define the statistic

V =

√
Nω

√

∑

i(ωi − ω)2/(N − 1)
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which, asymptotically, is characterized by a standard normal distribution. A sig-

nificant positive statistic indicates preference for the zero-inflated model, and a sig-

nificant negative statistic indicates preference for the model without zero-inflation.

Non-significant Vuong statistics indicate no preference for either model. Results of

this test are included in a footnote to the estimation of the model when the user

includes the vuong option in any of the zero-inflated commands.

Data Analysis: NHANES Example

Using the National Health and Examination Survey (NHANES 2009-2010) data, we

model the average number of cigarettes smoked per day during the past 30 days

(smd650) as a function of covariates; age (ridageyr), gender (gendernew), and race

(racenew), for 1,504 participants. The participants in this study provided informed

consent for the collection of data and the data are of de-identified format freely avail-

able over the internet (http://www.cdc.gov/nchs/nhanes/nhanes2009-2010/nhanes

09_10.htm, accessed March, 2013). We recoded the original variables ridreth1 vari-

able, now called racenew, that includes Non-Hispanic White versus Others (Mexican

American, Other Hispanic, Non-Hispanic Black, Other RaceMulti-Racial) and ria-

gendr. Selected characteristics of the given variables above from the dataset are

given in Table 3.3.

To visually investigate where heaping in the average number of cigarettes smoked

per day during the past 30 days may exist, we plot the data by the use of a spikeplot

in Figure 3.1.

Here we see that heaping tends to be present at multiples of 5 (i.e. 5, 10, 15,

etc.). Therefore, we may try the width of heaping of 5 with a half-width of heaping

being ⌊5/2⌋. We also notice that there are no 0’s in our outcome variable so the

zero-inflated versions of our new commands will not be illustrated in this analysis.
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Table 3.1 NHANES Example Selected Characteristics (n = 1504)

Characteristic Frequency
Cigarettes smoked/day in the past 30 days, mean (SD) 11.55 (9.98)
Age, mean (SD) 40.73 (16.64)
Gender, No. (%)

Females 669 (44.48)
Males 835 (55.52)

Race, No. (%)
Non-Hispanic White 749 (49.80)
Other Races 755 (50.20)

Cigarettes smoked/day in the past 30 days, mean (SD)
Females 11.17 (9.13)
Males 11.85 (10.61)
Non-Hispanic White 14.81 (10.62)
Other Races 8.31 (8.11)
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Avg # cigarettes/day during past 30 days

Figure 3.1 Average # of Cigarettes Smoked per day during the past 30 days

Poisson

By fitting a Poisson model (without our proposed approach) to the outcomes, the
results are given by

18
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. poisson smd650 gendernew racenew ridageyr, nolog

Poisson regression Number of obs = 1504

LR chi2(3) = 2107.84

Prob > chi2 = 0.0000

Log likelihood = -7782.0546 Pseudo R2 = 0.1193

smd650 Coef. Std. Err. z P>|z| [95% Conf. Interval]

gendernew -.1100815 .0154432 -7.13 0.000 -.1403497 -.0798134

racenew .6051288 .0158992 38.06 0.000 .573967 .6362906

ridageyr .0114867 .0004495 25.56 0.000 .0106057 .0123677

_cons 1.66475 .0246423 67.56 0.000 1.616452 1.713049

Using our proposed method and model, from Section 2.1, to fit the outcomes with
heaping at multiples of 5, with a half-width of ⌊5/2⌋, the results are

. heapreg smd650 gendernew racenew ridageyr, width(5) heap(5) poisson hausman nolog

Heaped Poisson regression Number of obs = 1504

Heaping interval(s) = 5 LR chi2(3) = 2052.59

Heaping halfwidth(s) = 2 Prob > chi2 = 0.0000

Log likelihood = -6199.084 Pseudo R2 = 0.1420

smd650 Coef. Std. Err. z P>|z| [95% Conf. Interval]

gendernew -.1159769 .0162138 -7.15 0.000 -.1477553 -.0841985

racenew .6270578 .0167221 37.50 0.000 .5942832 .6598324

ridageyr .0117447 .0004681 25.09 0.000 .0108271 .0126622

_cons 1.623066 .0257717 62.98 0.000 1.572554 1.673577

Hausman test of heaped vs. non-heaped model: x = 75.62 Pr>x = 0.0000

We see a slight difference in the models coefficients and also a statistically significant

Hausman test of Heaped Poisson model vs. non-heaped Poisson model.

Generalized Poisson

The results of fitting a GP model (without our proposed approach) to the outcomes
are given by

. gpoisson smd650 gendernew racenew ridageyr, nolog
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Generalized Poisson regression Number of obs = 1504

LR chi2(3) = 289.54

Dispersion = .6439007 Prob > chi2 = 0.0000

Log likelihood = -5052.9281 Pseudo R2 = 0.0279

smd650 Coef. Std. Err. z P>|z| [95% Conf. Interval]

gendernew -.0611733 .0363914 -1.68 0.093 -.1324991 .0101526

racenew .5461656 .0369862 14.77 0.000 .4736739 .6186573

ridageyr .0101732 .0009927 10.25 0.000 .0082276 .0121188

_cons 1.738053 .0559818 31.05 0.000 1.628331 1.847775

/atanhdelta .7648088 .0156008 .7342318 .7953858

delta .6439007 .0091326 .6256475 .6614493

Likelihood-ratio test of delta=0: chi2(1) = 5458.25 Prob>=chi2 = 0.0000

In the regular GP model, we see a statistically significant likelihood-ratio test
(LRT) of δ = 0 (dispersion factor), which indicates that the GP model is more
appropriate to use than the regular Poisson model. However, by using our proposed
method and model, from Section 2.1, to fit the outcomes with heaping at multiples
of 5, with a half-width of ⌊5/2⌋, the results are

. heapreg smd650 gendernew racenew ridageyr, width(5) heap(5) gpoisson hausman nolog

Heaped Gen. Poisson regression Number of obs = 1504

Heaping interval(s) = 5 LR chi2(4) = 288.24

Heaping halfwidth(s) = 2 Prob > chi2 = 0.0000

Log likelihood = -3647.245 Pseudo R2 = 0.0380

smd650 Coef. Std. Err. z P>|z| [95% Conf. Interval]

gendernew -.0625132 .0368258 -1.70 0.090 -.1346905 .009664

racenew .5515987 .0374428 14.73 0.000 .4782122 .6249852

ridageyr .0102635 .0010044 10.22 0.000 .0082949 .0122321

_cons 1.722311 .0566675 30.39 0.000 1.611245 1.833377

/atanhdelta .7654887 .0157573 .734605 .7963725

delta .6442986 .0092161 .6258745 .6620039

Hausman test of heaped vs. non-heaped model: x = 15.75 Pr>x = 0.0076
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Again, we see a slight difference in the coefficients of the models along with a statis-

tically significant Hausman test of Heaped GP model vs. non-heaped GP model.

Negative Binomial

The results of fitting a NB model (without our proposed approach) to the outcomes
are given by

. nbreg smd650 gendernew racenew ridageyr, nolog

Negative binomial regression Number of obs = 1504

LR chi2(3) = 290.60

Dispersion = mean Prob > chi2 = 0.0000

Log likelihood = -5048.0101 Pseudo R2 = 0.0280

smd650 Coef. Std. Err. z P>|z| [95% Conf. Interval]

gendernew -.0995121 .0413518 -2.41 0.016 -.1805602 -.0184641

racenew .614582 .0411743 14.93 0.000 .5338819 .6952822

ridageyr .0138921 .0013283 10.46 0.000 .0112887 .0164956

_cons 1.552952 .0658433 23.59 0.000 1.423901 1.682002

/lnalpha -.6339091 .0425475 -.7173006 -.5505176

alpha .5305139 .022572 .488068 .5766512

Likelihood-ratio test of alpha=0: chibar2(01) = 5468.09 Prob>=chibar2 = 0.000

In the regular NB model, we see a statistically significant likelihood-ratio test
(LRT) of α = 0 (dispersion factor), which indicates that the NB model is more
appropriate to use than the regular Poisson model. Using our proposed method and
model, from Section 2.1, to fit the outcomes with heaping at multiples of 5, with a
half-width of ⌊5/2⌋, the results are

. heapreg smd650 gendernew racenew ridageyr, width(5) heap(5) nbreg hausman nolog

Heaped Neg. Binomial regression Number of obs = 1504

Heaping interval(s) = 5 LR chi2(4) = 290.93

Heaping halfwidth(s) = 2 Prob > chi2 = 0.0000

Log likelihood = -3642.926 Pseudo R2 = 0.0384

smd650 Coef. Std. Err. z P>|z| [95% Conf. Interval]
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gendernew -.1019672 .0418746 -2.44 0.015 -.1840399 -.0198944

racenew .6228999 .0417027 14.94 0.000 .5411642 .7046356

ridageyr .0140554 .0013436 10.46 0.000 .0114219 .0166889

_cons 1.532817 .0667109 22.98 0.000 1.402066 1.663568

/lnalpha -.6254518 .0428605 -.7094568 -.5414467

alpha .5350197 .0229312 .4919113 .5819058

Hausman test of heaped vs. non-heaped model: x = 14.99 Pr>x = 0.0104

Lastly, a slight difference in the models coefficients and dispersion factor (α) is shown

and also a statistically significant Hausman test of Heaped Negative Binomial model

vs. Negative Binomial model. Our interval regression method for heaped count data,

shows to be more efficient than a regular count data model, based on the significance of

the Hausman tests for all 3 models with p-values of 0.0104, 0.0000, 0.0076 respectively

at α = 0.05. All analyses and graphics were preformed using Stata statistical software,

version 12 (Stata Corp., College Station, TX).

Discussion

With regard to the reported average number of cigarettes smoked per day during the

past 30 days, all variables in our model were statistically significant associated (based

on the Heaped NB model) at α = 0.05. Females reported fewer average number of

cigarettes smoked per day during the past 30 days by a factor of 0.90 (exp(-.110))

compared to males, holding all other factors constant (p-value = 0.015). Non-Hispanic

Whites reported more average number of cigarettes smoked per day during the past

30 days by a factor of 1.86 (exp(.623)) compared to other races, holding all other

factors constant (p-value < 0.001). Lastly, the reported average number of cigarettes

smoked per day during the past 30 days increases by a factor of 1.01 (exp(.014)) as age

increases by 1 year, holding all other factors constant (p-value < 0.001). All models

have all variables statistically signficantly associated (at α = 0.05) with the outcome
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except GP models (both nonheaped and heaped) where gender is not statistically

significant. Our interval regression method for heaped count data, shows to be more

efficient than a regular count data model, based on the significance of the Hausman

tests for all 3 models with p-values of 0.0104, 0.0000, 0.0076 respectively at α = 0.05.

This section presents a new approach of modeling heaped ("rounded") count data

that, by the use of censored interval regression. These heaped count data can lead

to biased estimation and imprecision in discrete quantitative data. We also intro-

duce supporting Stata commands and programs, HEAPREG and ZIHEAPREG that

illustrate the effectiveness of our approach.

3.2 Modeling Heaped Data with an Application in Self-Reported Fre-

quencies of Sexual Activities

Introduction

The motivation for this section is built around a National Institute of Mental Health

(NIMH) multisite HIV (human immunodeficiency virus)/STD (sexually transmitted

disease) prevention trial for heterosexual African American couples otherwise known

as EBAN trial. The couples were randomized into one of two interventions: the EBAN

HIV/STD risk-reduction group (couples) or the EBAN health promotion group (in-

dividuals). The goal of this study was to reduce risk behaviors in HIV serodiscordant

African American couples (NIMH Multisite HIV/STD Prevention Trial for African

American Couples Group [2008]). Researchers observed, in previous literature, that

females and males tended to round (heap) their answers to certain questions differ-

ently, therefore skewing the final results of the study.
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Data Analysis: EBAN Study Data

Data was provided from a National Institute of Mental Health (NIMH) multisite

HIV/STD prevention trial for heterosexual African American couples which was con-

ducted in 4 US urban areas: Atlanta (Emory University), Los Angeles (University of

California), New York (Columbia University), and Philadelphia (University of Penn-

sylvania) (Table 3.2). Most participants were from the Columbia University site,

followed by the Emory University site, then University of California and University

of Pennsylvania sites. The investigators started enrollment in November 2003 and

ended in June 2007. The trial was centered around a traditional African concept,

where there was a sense of safety, security, and love through the idea of "Fence" (def-

inition of EBAN). This cluster randomized trial used 535 eligible African American

HIV serodiscordant heterosexual couples who had the following eligibility criteria:

1. At least 18 years old

2. Be a couple for at least 6 months before study entry

3. Planned to remain a couple at least 12 months after study entry

4. At least 1 partner reported unprotected intercourse in the last 90 days

5. Neither partner has plans to relocate beyond a reasonable distance from the

study site

6. At least 1 partner was African American

7. At least one partner agrees that he/she is not planning pregnancy within the

next 18 months after study entry

8. Awareness of partner’s HIV serostatus

9. Only one partner is HIV seropositive and has known his or her status for at

least 3 months before study entry
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There were also some exclusion criteria which included the following:

1. One or both partners do not have an address where they can receive mail

2. One or both partners have significant psychiatric, physical, or neurological im-

pairment that would limit their effective participation as confirmed on a Mini

Mental State Examination and/or Quick Test

3. History of severe physical or sexual abuse in the 1 year before study entry in

the current relationship

4. One or both partners are unwilling or unable to commit to participate in the

study through to completion

5. Both partners have previously participated in an HIV sexual risk-reduction

intervention for couples in the 12 months before study entry

6. One or both partners are not fluent in English as determined by the informed

consent process

Table 3.2 EBAN Study: Randomized Intervention Groups,
Overall and by Clinical Site (at Baseline)

Total Total No. in Total No. in
Site Participants (#,%) RR Group (#,%) HP Group (#,%)

NY 442 (41.31) 208 (40.00) 234 (42.55)
GA 234 (21.87) 114 (21.92) 120 (21.82)
LA 200 (18.69) 104 (20.00) 96 (17.45)
PA 194 (18.13) 94 (18.08) 100 (18.18)

All Sites 1070 (100) 520 (100) 550 (100)

Couples were randomized into one of two interventions groups: couple-based

EBAN HIV/STD risk-reduction (RR) intervention (260 couples) or an individual-

based health promotion (HP) comparison (275 couples). In El-Bassel et al. [2010],

the authors describe that in the risk-reduction intervention, group sessions addressed
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community-level factors by emphasizing the threat of HIV to African-American com-

munities. The intervention promotes communication, problem solving, monogamy,

and negotiation skills. Some principles that were used to motivate couples to use

condoms consistently in order to protech each other and their respective communi-

ties include unity, self-determination, and purpose. However, the health promotion

comparison group focused on the participants as individuals, not couples. Facili-

tators discussed behaviors linked to the risk of heart disease, hypertension, stroke,

etc. as well as increasing fruit and vegatable consumption, physical activity, medical

adherence, and HIV medication adherence.

Some basic characteristics that were recorded were age, education level, monthly

income, insured, years lived in the United States, living arrangement, etc. Baseline,

immediate post-intervention test (IPT), 6-month and 12-month information was also

collected for the following sexual behavior outcomes: Proportion of condom-protected

sex, Consistent (100%) condom use, Unprotected sex, and Concurrent partners. The

goal of this study was to determine whether the use of a behavioral intervention

could reduce the risk of HIV/STD amongst African American HIV serodiscordant

(heterosexual) couples (El-Bassel et al. [2010]). For this research, however, we will

use the outcome of the question asked to both parties of each couple (respectively):

In the past 90 days, about how many times did your study partner put his penis into

your vagina? and In the past 90 days, about how many times did you put your penis

into your study partner’s vagina? Based on previous literature, we believe males and

females may have heaped (rounded) their answers differently.

Data Analysis: Eban Study

To illustrate how the proposed regression models can be applied to real data, we used

the EBAN data as discussed in Section 3.2. A selected group of descriptive statis-

tics are described in Table 3.3 by intervention group. The majority of participants,
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based on the characteristics in Table 3.3, include unemployed, having a high schoold

diploma or GED, a monthly income of 400−850, insured, and living with their study

partner. Over half of the study participants spent time in an inpatient drug treatment

program and about 19% of the couples have concurrent partners. For the following

analyses, we used data from the last time period (12 month) and then included the

following covariates in a heaped zero-inflated Negative binomial regression model:

gender (gender), treatment (trt), partner barriers subscale (xk_pb), and the number

of times the participant had sexual intercourse with their partner within the past 90

days at baseline (baseline). Concurrency is important because the outcome variable

we analyze is specific to the study partner. That is, each respondent reports the num-

ber of episodes of sexual intercourse with the study partner over the past 90 days.

Some of the study participants had other (concurrent) sex partners, and any sexual

activities with those other partners are not included in our particular outcome. For

the inflation (logistic model) part of the model, we specified these same covariates

(except baseline) along with age (xage), HIV status at baseline (xhivstatus), con-

current partner (xconcurr), and effect on sexual experience subscale (xk_ese). The

subscales (effect on sexual experience and partner barriers) discussed earlier, assess

different perceived barriers participants may have towards using condoms. The effect

on sexual experience subscale measures perceived aspects of intercourse (sex) that

may be perceived as a barrier towards using a condom (i.e. intercouse with a condom

is messy). The partner barriers subscale measures perceived partner barriers towards

using a condom (i.e my partner controls condom use).

We are interested in the associations of these covariates with the number of re-

ported times having sexual intercourse within the past 90 days after a 12 month

follow-up. We determined that responses heaped at multiples of 5 and 12 with re-

spective half-widths of ⌊5/2⌋ = 2 and ⌊12/2⌋ = 6, shown in Figures 3.2 and 3.3.

We use the new commands in Stata software (from Section 3.1) to analyze heaped
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Table 3.3 EBAN Study: Selected Characteristics for Randomized Intervention
Groups (at Baseline)

Characteristic RR Group (n=520) HP Group (n=550)
Age, mean (SD) 43.33 (8.00) 43.49 (8.16)
Employment, No. (%)

Unemployed 369 (71.93) 390 (71.17)
Part-time 45 (8.77) 61 (11.13)
Full-time 99 (19.30) 97 (17.70)

Education, No. (%)
< Less than a HS diploma 162 (31.52) 164 (29.87)
HS diploma or GED 209 (40.66) 228 (41.53)
Some college/2-year degree 120 (23.35) 136 (24.77)
4-year college degree/post-graduate 23 (4.47) 21 (3.83)

Monthly Income, No. (%)
< $400 156 (30.41) 151 (27.61)
$400–$850 202 (39.38) 244 (44.61)
$851–$2500 142 (27.68) 137 (25.05)
> $2500 13 (2.53) 15 (2.74)

Insured, No. (%) 377 (73.35) 423 (77.33)
Time spent inpatient drug treatment program, No. (%) 269 (52.33) 285 (52.01)
Living with study partner, No. (%) 368 (71.88) 438 (79.78)
Times in the past 90 days had intercourse, mean (SD) 25.17 (32.87) 23.98 (37.83)
Partner Barriers subscale, mean (SD) 9.98 (3.00) 10.13 (2.95)
Effect on Sexual Experience Subscale, mean (SD) 8.83 (3.31) 8.72 (3.09)
Concurrent partner (by Couple), No (%) 98 (19.14) 98 (18.01)
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Figure 3.2 EBAN Study: Number of times in the past 90 days had
Intercourse (across all 4 time periods)

28



www.manaraa.com

0
20

0
40

0
60

0
80

0
10

00
F

re
qu

en
cy

0 10 20 30 40 50 60 70 80 90 100
# of Times in the Past 90 days had Intercourse

(<=100 times)
# of Times in the Past 90 days had Intercourse

Figure 3.3 EBAN Study: Number of times in the past 90 days had
Intercourse less than 100 (across all 4 time periods)

data for the heaped zero-inflated Negative Binomial regression model and the zero-

inflated Negative Binomial regression model. Table 3.4 provides effect estimates with

associated standard errors, z-values, and p-values for the heaped zero-inflated Neg-

ative Binomial regression model, while Table 3.5 provides model estimates from the

zero-inflated Negative Binomial regression model where α=dispersion factor.

Overall, there were 936 observations used in this analysis. Here, 253 observa-

tions had 0 reported sexual intercourse episodes with their study parnter within the

past 90 days and the overall model was significant (p-value = 0.0000) in the heaped

zero-inflated Negative Binomial model. With regard to the reported frequency of in-

tercourse within the past 90 days, there were two statistically significant associations.

From the results shown in Table 3.4, being in the health promotion (HP) treatment

intervention group is associated with fewer reported episodes of sexual intercourse
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Table 3.4 Eban Study : Heaped Zero-Inflated NB Estimation Results

Variable Coefficient (Std. Err.) z P > |z|
Equation 1 : Number of times had sexual intercourse in past 90 days
trt -0.183 0.093 -1.96 0.050*
gender 0.019 0.093 0.20 0.839
xk_pb 0.006 0.016 0.38 0.703
baseline 0.017 0.002 9.48 0.000*
Intercept 2.509 0.251 10.01 0.000*

Equation 2 : Inflate
xage 0.074 0.020 3.70 0.000*
trt -0.155 0.261 -0.59 0.552
xhivstatus 0.216 0.258 0.84 0.403
gender 0.344 0.287 1.20 0.230
xconcurr 1.668 0.299 5.58 0.000*
xk_ese -0.098 0.052 -1.89 0.059
xk_pb 0.093 0.058 1.61 0.107
Intercept -5.892 1.303 -4.52 0.000*
ln(α) 0.377 0.084
α 1.458 0.122
*p-value < 0.05

Table 3.5 Eban Study : Zero-Inflated NB Estimation Results

Variable Coefficient (Std. Err.) z P > |z|
Equation 1 : Number of times had sexual intercourse in past 90 days
trt -0.179 0.092 -1.94 0.052
gender 0.015 0.092 0.16 0.871
xk_pb 0.006 0.016 0.38 0.703
baseline 0.016 0.002 9.50 0.000*
Intercept 2.529 0.248 10.21 0.000*

Equation 2 : Inflate
xage 0.072 0.019 3.73 0.000*
trt -0.144 0.253 -0.57 0.569
xhivstatus 0.219 0.251 0.87 0.383
gender 0.330 0.278 1.19 0.236
xconcurr 1.631 0.290 5.63 0.000*
xk_ese -0.095 0.050 -1.91 0.056
xk_pb 0.093 0.056 1.65 0.099
Intercept -5.756 1.258 -4.58 0.000*
ln(α) 0.352 0.083
α 1.422 0.118
*p-value < 0.05
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by a factor of 0.83 (exp(−0.183)) compared to the risk-reduction (RR) intervention

group, holding all other factors constant (p-value = 0.050). As the number of re-

ported episodes of sexual intercourse at baseline increases by one year, the odds of

reporting episodes of sexual intercourse increases by a factor of 1.02 (exp(0.017)),

holding all other variables constant (p-value < 0.001. Being female is associated, but

not statistically significant, with more reported episodes of sexual intercourse by a

factor of 1.02 (exp(0.019)) compared to males, holding all other variables constant

(p-value = 0.839). As a person’s partner barriers subscale increases by one, the odds

of reporting episodes of sexual intercourse increases, but not significantly, by a factor

of 1.01 (exp(0.006)), holding all other variables constant (p-value = 0.703.

From the inflation equation, from Table 3.4, that is a result from a logistic re-

gression model predicting a reported frequency of sexual intercourse of 0, includes

two statistically significant assocations as well. As age increases by 10 years, the

odds of reporting zero episodes of sexual intercourse increases by a factor of 2.10

(exp(0.074 ∗ 10)), holding all other variables constant (p-value< 0.001). Having a

concurrent partner increases the odds of reporting zero episodes of sexual intercourse

by a factor of 5.30 (exp(1.668)) compared to not having a concurrent partner, hold-

ing all other variables constant (p-value < 0.001). The nonsignificant associations

where the odds of reporting zero episodes of sexual intercourse increased includes be-

ing HIV+, being female, and the partner barriers subscale. While the nonsignificant

associations where the odds of reporting zero episodes of sexual intercourse decreased

includes treatment intervention group and the effect on sexual experience subscale.

Finally, we point out that a zero-inflated negative binomial regression model,

shown in Table 3.5, which does not take into account heaping results in a nonsignifi-

cant association of the treatment intervention groups. Though this would not always

happen, it does highlight the benefit of properly addressing the distribution of the

outcomes. Other than the difference in declaring the association of group member-
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ship significant, the inference from the model which does not address heaping was the

same. All analyses were performed using Stata statistical software, version 12 (Stata

Corp., College Station, TX).

Discussion

We have developed statistical models for heaped count data where our method intro-

duces a mixture of likelihood functions for heaped and nonheaped count data. For the

heaped count data, we considered the reported outcome to be censored over the half

width of the heaping multiple. We then simultaneously consider nonheaped count

data where we treat the data as exact counts and base them on the distribution’s

likelihood. This proposed method was motivated by self-reported frequency of sexual

intercourse from the EBAN study of African American HIV serodiscordant African

American couples. Due to the nature of our self-reported study data, we noticed clear

heaping for the number of times each study participant had sexual intercourse with

their study partner within the past 90 days at multiples of 5 and 12, which may be

the result of recall or measurement errors.

The analysis of this data using a heaped zero-inflated negative binomial regression

model having a significant treatment intervention effect, reveals a possible advantage

of using a heaped model rather than a non-heaped model. Gender, however, does

not substantially effect the expected the number of times of having sexual intercourse

with the study partner, within the past 90 days. Being in the treatment group and

the number of sexual intercourse episodes at baseline are all associated with reporting

significantly fewer episodes and greater episodes of sexual intercourse, respectively.

We again point out that these reported numbers are the number of episodes of sexual

intercourse with the partner in this study. Thus, persons with concurrent partners

may have greater numbers of sexual intercourse episodes, just not greater with the

partner in this study. Having a concurrent partner increased the odds of reporting zero
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episodes of sexual intercourse significantly. Accounting for heaping improved the fit of

the count data, while preserving the exact self-reported counts. Our method requires

some prior knowledge of the multiple(s) of heaping (or half-width of heaping) which

some researchers may not have, therefore further research is necessary to address

these issues.

3.3 Simulation Study

Introduction

In this section, we compare Poisson probabilities, Heaped Poisson probabilities, and

the empirical (observed) probabilities for each particular covariate pattern. The

model used in our simulations was defined by

y = 1 + x1 + 2x2 − 0x3 (3.1)

where we synthesize x1 from a Bernoulli(0.5) distribution, x2 from a Bernoulli(0.5)

distribution, and x3 from a Bernoulli(0.5) distribution. However, we heaped the

outcome data, y, based on multiples of 4 while using a Poisson distribution (from

Section 2.1).

Data Analysis: Simulation Study

The spikeplot of our simulated data is shown in Figure 3.4. For each covariate coeffi-

cient in Equation 3.1, the Poisson, Heaped Poisson, and empirical probabilities were

computed. Simulation results are based on 10000 replications. Some properties of

the heaped Poisson data include

E(Yi) = 21.1934 V ar(Yi) = 437.1595

Min(Yi) = 0 Max(Yi) = 80
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Figure 3.4 Simulation Study: Spikeplot of Heaped Poisson data (10,000
Replications)

Table 3.6 and 3.7 provides effect estimates with associated standard errors, z-values,

and p-values from Poisson and Heaped Poisson distributions respectively.

Table 3.6 Simulation Study: Poisson Regression Estimation
Results

Poisson Regression
Variable Coefficient (Std. Err.) z P > |z|

x1 1.004 (0.005) 204.20 0.000*
x2 2.013 (0.007) 297.80 0.000*
x3 -0.0004 (0.004) -0.09 0.928
Intercept 0.983 (0.008) 129.52 0.000*
*p-value < 0.05

Both models were overall statistically significant (p-value < 0.0001). We also per-

formed a Hausman test for these data. The Hausman test (Davidson and MacKinnon

[1996]) examines to see if there is a significant difference between two models, a more
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Table 3.7 Simulation Study: Heaped Poisson Regression
Estimation Results

Heaped Poisson Regression
Variable Coefficient (Std. Err.) z P > |z|

x1 1.011 (0.005) 200.98 0.000*
x2 2.034 (0.007) 284.82 0.000*
x3 -0.0006 (0.004) -0.150 0.884
Intercept 0.956 (0.008) 119.94 0.000*
*p-value < 0.05

efficient model (heaped) against a less efficient (regular) but consistent model. This

occurs to make sure that the more efficient model also gives consistent results. Under

the null hypothesis of this test, the estimated coefficients (β̂p,β̂th) are consistent only

if β̂p (regular model) is efficient, while under the alternative hypothesis β̂th (heaped

model) is consistent. Therefore, we have test statistic of

a = (β̂p − β̂th)(Vth − Vp)−1(β̂p − β̂th)−1

where Vth and Vp are consistent estimates of the covariance matrices of β̂th and β̂p

respectively. If a significant p-value results, the null hypothesis is rejected therefore

meaning that the more efficient model, our heaped version, is better. While, non-

significant Hausman test statistic indicate no preference for either model. Results of

this test concluded in a test statistic of 133.20 with a p-value < 0.0001, therefore our

heaped model is the more efficient model. The means from each covariate pattern

from their respective distributions (see Table 3.8).

The probabilities from each regression model by the 8 covariate patterns for x1,

x2, and x3 are shown in Table 3.9-3.17 and visually represented in Figure 3.5.

Each covariate pattern has a different set of probabilities based on the means from

Table 3.8. The empirical probabilities (in black) show the heaped poisson simulated

data, while the Poisson regression model probabilities are in red. Visually, the bar

charts show that the Poisson regression model does not fit the heaped data accurately

due to the black bars being so far from the red (Poisson) distribution. In Figure 3.6,
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Table 3.8 Simulation Study: Means from using the
Empirical, Poisson, Heaped Poisson Distribution
regression models

Means
x1 x2 x3 Empirical Poisson Heaped Poisson
0 0 0 2.6315 2.6720 2.6026
0 0 1 2.5883 2.6709 2.6009
1 0 0 7.3539 7.2955 7.1565
1 0 1 7.3603 7.2926 7.1519
0 1 0 20.0629 20.0040 19.9022
0 1 1 20.0630 19.9962 19.8895
1 1 0 54.5407 54.6185 54.7275
1 1 1 54.5503 54.5972 54.6924
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Figure 3.5 Simulation Study: All Covariate Patterns Probabilities

we have extracted just the covariate combination of x1 = 1, x2 = 1, and x3 = 1 from

Figure 3.5 to magnify the insufficient Poisson model fitting heaped count data.

Notice, in Figure 3.7, we have extracted the same covariate combination of x1 = 1,

x2 = 1, and x3 = 1 to magnify the more efficient Heaped Poisson model fitting heaped
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Figure 3.6 Simulation Study: Covariate Pattern x1 = 1, x2 = 1, and x3 = 1
probabilities

count data better than a regular Poisson regression model.

The probabilities for the true parameter estimates (from Equation 3.1) using the

Empirical, Poisson, and Heaped Poisson regression models with 10,000 replications

are located in Tables 3.9-3.17. The probabilities for the true parameter estimates

using the Observed Censored and Heaped Censored Poisson regression models, at

multiples of 4 are located in Tables 3.18, 3.19, 3.20, 3.21. The graphs associated

with the other 7 combinations comparing the Observed Censored to the Heaped

Censored Poisson models is located in Figures 3.8-3.14. All analyses and graphics

were preformed using Stata statistical software, version 12 (Stata Corp., College

Station, TX).
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Discussion

We have developed statistical models that handle heaped count data. This method

introduces a mixture of likelihood functions for heaped and nonheaped count data

where heaped data is assumed to be censored observations over an interval or con-

stant multiple. The nonheaped data we treat as exact counts from it’s respective

distribution. We illustrated the effectiveness of our new approach by preforming a

simulation study where we synthesized heaped data and fit it both with a Poisson

regression model and Heaped Poisson regression model. Based on the results of this

study, our heaped Poisson model fits the heaped count data better than a regular

Poisson regression model.
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Table 3.9 Simulation Study: Probabilities (10000 replications) for the true
parameter estimates (from Equation 3.1) using the Empirical, Poisson, and
Heaped Poisson regression models for x1=0, x2=0, x3=0 & x1=0, x2=0, x3=1 &
x1=1, x2=0, x3=0 (part A)

Covariate Pattern
x1=0,x2=0,x3=0 x1=0,x2=0,x3=1 x1=1,x2=0,x3=0

y Emp P HP Emp P HP Emp P HP
0 0.1386 0.0691 0.0741 0.1354 0.0692 0.0742 0.0032 0.0007 0.0008
1 0.1528 0.1847 0.1928 0.1576 0.1848 0.193 0.013 0.005 0.0056
2 0.2433 0.2467 0.2509 0.2439 0.2468 0.251 0.017 0.0181 0.02
3 0.1205 0.2197 0.2177 0.1433 0.2197 0.2176 0.0252 0.0439 0.0476
4 0.185 0.1468 0.1416 0.1845 0.1467 0.1415 0.1258 0.0801 0.0852
5 0.1016 0.0784 0.0737 0.0768 0.0784 0.0736 0.0698 0.1169 0.122
6 0.037 0.0349 0.032 0.0372 0.0349 0.0319 0.1396 0.1421 0.1455
7 0.011 0.0133 0.0119 0.0063 0.0133 0.0119 0.0942 0.1481 0.1487
8 0.0094 0.0045 0.0039 0.0127 0.0044 0.0039 0.2297 0.1351 0.1331
9 0 0.0013 0.0011 0.0016 0.0013 0.0011 0.0714 0.1095 0.1058
10 0.0008 0.0004 0.0003 0.0008 0.0004 0.0003 0.0828 0.0799 0.0757
11 0 0.0001 0.0001 0 0.0001 0.0001 0.0317 0.053 0.0493
12 0 0 0 0 0 0 0.0641 0.0322 0.0294
13 0 0 0 0 0 0 0.0138 0.0181 0.0162
14 0 0 0 0 0 0 0.0106 0.0094 0.0083
15 0 0 0 0 0 0 0.0032 0.0046 0.0039
16 0 0 0 0 0 0 0.0032 0.0021 0.0018
17 0 0 0 0 0 0 0.0008 0.0009 0.0007
18 0 0 0 0 0 0 0.0008 0.0004 0.0003
19 0 0 0 0 0 0 0 0.0001 0.0001
20 0 0 0 0 0 0 0 0.0001 0
21 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0 0 0
33 0 0 0 0 0 0 0 0 0
34 0 0 0 0 0 0 0 0 0
35 0 0 0 0 0 0 0 0 0
36 0 0 0 0 0 0 0 0 0
37 0 0 0 0 0 0 0 0 0
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Table 3.10 Simulation Study: Probabilities (10000
replications) for the true parameter estimates (from
Equation 3.1) using the Empirical, Poisson, and Heaped
Poisson regression models for x1=0, x2=0, x3=0 & x1=0,
x2=0, x3=1 & x1=1, x2=0, x3=0 (part B)

Covariate Pattern
x1=0,x2=0,x3=0 x1=0,x2=0,x3=1 x1=1,x2=0,x3=0

y Emp P HP Emp P HP Emp P HP
38 0 0 0 0 0 0 0 0 0
39 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0
41 0 0 0 0 0 0 0 0 0
42 0 0 0 0 0 0 0 0 0
43 0 0 0 0 0 0 0 0 0
44 0 0 0 0 0 0 0 0 0
45 0 0 0 0 0 0 0 0 0
46 0 0 0 0 0 0 0 0 0
47 0 0 0 0 0 0 0 0 0
48 0 0 0 0 0 0 0 0 0
49 0 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0 0
51 0 0 0 0 0 0 0 0 0
52 0 0 0 0 0 0 0 0 0
53 0 0 0 0 0 0 0 0 0
54 0 0 0 0 0 0 0 0 0
55 0 0 0 0 0 0 0 0 0
56 0 0 0 0 0 0 0 0 0
57 0 0 0 0 0 0 0 0 0
58 0 0 0 0 0 0 0 0 0
59 0 0 0 0 0 0 0 0 0
60 0 0 0 0 0 0 0 0 0
61 0 0 0 0 0 0 0 0 0
62 0 0 0 0 0 0 0 0 0
63 0 0 0 0 0 0 0 0 0
64 0 0 0 0 0 0 0 0 0
65 0 0 0 0 0 0 0 0 0
66 0 0 0 0 0 0 0 0 0
67 0 0 0 0 0 0 0 0 0
68 0 0 0 0 0 0 0 0 0
69 0 0 0 0 0 0 0 0 0
70 0 0 0 0 0 0 0 0 0
71 0 0 0 0 0 0 0 0 0
72 0 0 0 0 0 0 0 0 0
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Table 3.11 Simulation Study: Probabilities (10000
replications) for the true parameter estimates (from
Equation 3.1) using the Empirical, Poisson, and Heaped
Poisson regression models for x1=0, x2=0, x3=0 & x1=0,
x2=0, x3=1 & x1=1, x2=0, x3=0 (part C)

Covariate Pattern
x1=0,x2=0,x3=0 x1=0,x2=0,x3=1 x1=1,x2=0,x3=0

y Emp P HP Emp P HP Emp P HP
73 0 0 0 0 0 0 0 0 0
74 0 0 0 0 0 0 0 0 0
75 0 0 0 0 0 0 0 0 0
76 0 0 0 0 0 0 0 0 0
77 0 0 0 0 0 0 0 0 0
78 0 0 0 0 0 0 0 0 0
79 0 0 0 0 0 0 0 0 0
80 0 0 0 0 0 0 0 0 0
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Table 3.12 Simulation Study: Probabilities (10000 replications) for the true
parameter estimates (from Equation 3.1) using the Empirical, Poisson, and
Heaped Poisson regression models for x1=1, x2=0, x3=1 & x1=0, x2=1, x3=0 &
x1=0, x2=1, x3=1 (part A)

Covariate Pattern
x1=1,x2=0,x3=1 x1=0,x2=1,x3=0 x1=0,x2=1,x3=1

y Emp P HP Emp P HP Emp P HP
0 0.0032 0.0007 0.0008 0 0 0 0 0 0
1 0.0097 0.005 0.0056 0 0 0 0 0 0
2 0.017 0.0181 0.02 0 0 0 0 0 0
3 0.0258 0.044 0.0478 0 0 0 0 0 0
4 0.1155 0.0802 0.0854 0 0 0 0 0 0
5 0.0824 0.117 0.1221 0 0.0001 0.0001 0 0.0001 0.0001
6 0.1397 0.1422 0.1456 0 0.0002 0.0002 0 0.0002 0.0002
7 0.0921 0.1481 0.1488 0.0008 0.0005 0.0006 0.0008 0.0005 0.0006
8 0.2447 0.135 0.133 0.0032 0.0013 0.0014 0.0033 0.0013 0.0014
9 0.059 0.1094 0.1057 0.0008 0.0029 0.0031 0.0008 0.0029 0.0031
10 0.0824 0.0798 0.0756 0.0056 0.0058 0.0061 0.0057 0.0058 0.0061
11 0.0372 0.0529 0.0491 0.004 0.0106 0.011 0.0049 0.0106 0.0111
12 0.0606 0.0321 0.0293 0.0335 0.0176 0.0183 0.0319 0.0177 0.0184
13 0.0121 0.018 0.0161 0.0279 0.0271 0.0281 0.0278 0.0272 0.0282
14 0.0105 0.0094 0.0082 0.0375 0.0387 0.0399 0.0376 0.0388 0.04
15 0.0032 0.0046 0.0039 0.0247 0.0516 0.0529 0.0311 0.0517 0.0531
16 0.0024 0.0021 0.0018 0.0924 0.0645 0.0658 0.0917 0.0646 0.066
17 0.0016 0.0009 0.0007 0.0606 0.0759 0.0771 0.0548 0.076 0.0772
18 0.0008 0.0004 0.0003 0.0837 0.0844 0.0852 0.0835 0.0844 0.0853
19 0 0.0001 0.0001 0.0526 0.0888 0.0893 0.0589 0.0889 0.0893
20 0 0.0001 0 0.161 0.0888 0.0888 0.1489 0.0888 0.0888
21 0 0 0 0.0486 0.0846 0.0842 0.0548 0.0846 0.0841
22 0 0 0 0.0773 0.0769 0.0761 0.0777 0.0769 0.076
23 0 0 0 0.043 0.0669 0.0659 0.0376 0.0668 0.0658
24 0 0 0 0.1012 0.0558 0.0546 0.0982 0.0557 0.0545
25 0 0 0 0.0287 0.0446 0.0435 0.0385 0.0445 0.0434
26 0 0 0 0.0359 0.0343 0.0333 0.0352 0.0343 0.0332
27 0 0 0 0.0159 0.0254 0.0245 0.0147 0.0254 0.0244
28 0 0 0 0.0231 0.0182 0.0174 0.0221 0.0181 0.0174
29 0 0 0 0.0151 0.0125 0.012 0.0164 0.0125 0.0119
30 0 0 0 0.0088 0.0084 0.0079 0.009 0.0083 0.0079
31 0 0 0 0.004 0.0054 0.0051 0.0033 0.0054 0.0051
32 0 0 0 0.0056 0.0034 0.0032 0.0057 0.0034 0.0031
33 0 0 0 0.0016 0.002 0.0019 0.0016 0.002 0.0019
34 0 0 0 0.0016 0.0012 0.0011 0.0016 0.0012 0.0011
35 0 0 0 0.0008 0.0007 0.0006 0.0008 0.0007 0.0006
36 0 0 0 0.0008 0.0004 0.0004 0 0.0004 0.0003
37 0 0 0 0 0.0002 0.0002 0.0008 0.0002 0.0002
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Table 3.13 Simulation Study: Probabilities (10000 replications) for the
true parameter estimates (from Equation 3.1) using the Empirical,
Poisson, and Heaped Poisson regression models for x1=1, x2=0, x3=1 &
x1=0, x2=1, x3=0 & x1=0, x2=1, x3=1 (part B)

Covariate Pattern
x1=1,x2=0,x3=1 x1=0,x2=1,x3=0 x1=0,x2=1,x3=1

y Emp P HP Emp P HP Emp P HP
38 0 0 0 0 0.0001 0.0001 0 0.0001 0.0001
39 0 0 0 0 0.0001 0.0001 0 0.0001 0
40 0 0 0 0 0 0 0 0 0
41 0 0 0 0 0 0 0 0 0
42 0 0 0 0 0 0 0 0 0
43 0 0 0 0 0 0 0 0 0
44 0 0 0 0 0 0 0 0 0
45 0 0 0 0 0 0 0 0 0
46 0 0 0 0 0 0 0 0 0
47 0 0 0 0 0 0 0 0 0
48 0 0 0 0 0 0 0 0 0
49 0 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0 0
51 0 0 0 0 0 0 0 0 0
52 0 0 0 0 0 0 0 0 0
53 0 0 0 0 0 0 0 0 0
54 0 0 0 0 0 0 0 0 0
55 0 0 0 0 0 0 0 0 0
56 0 0 0 0 0 0 0 0 0
57 0 0 0 0 0 0 0 0 0
58 0 0 0 0 0 0 0 0 0
59 0 0 0 0 0 0 0 0 0
60 0 0 0 0 0 0 0 0 0
61 0 0 0 0 0 0 0 0 0
62 0 0 0 0 0 0 0 0 0
63 0 0 0 0 0 0 0 0 0
64 0 0 0 0 0 0 0 0 0
65 0 0 0 0 0 0 0 0 0
66 0 0 0 0 0 0 0 0 0
67 0 0 0 0 0 0 0 0 0
68 0 0 0 0 0 0 0 0 0
69 0 0 0 0 0 0 0 0 0
70 0 0 0 0 0 0 0 0 0
71 0 0 0 0 0 0 0 0 0
72 0 0 0 0 0 0 0 0 0
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Table 3.14 Simulation Study: Probabilities (10000
replications) for the true parameter estimates (from
Equation 3.1) using the Empirical, Poisson, and Heaped
Poisson regression models for x1=1, x2=0, x3=1 & x1=0,
x2=1, x3=0 & x1=0, x2=1, x3=1 (part C)

Covariate Pattern
x1=1,x2=0,x3=1 x1=0,x2=1,x3=0 x1=0,x2=1,x3=1

y Emp P HP Emp P HP Emp P HP
73 0 0 0 0 0 0 0 0 0
74 0 0 0 0 0 0 0 0 0
75 0 0 0 0 0 0 0 0 0
76 0 0 0 0 0 0 0 0 0
77 0 0 0 0 0 0 0 0 0
78 0 0 0 0 0 0 0 0 0
79 0 0 0 0 0 0 0 0 0
80 0 0 0 0 0 0 0 0 0
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Table 3.15 Simulation Study: Probabilities (10000
replications) for the true parameter estimates (from
Equation 3.1) using the Empirical, Poisson, and Heaped
Poisson regression models for x1=1, x2=1, x3=0 &
x1=1, x2=1, x3=1 (part A)

Covariate Pattern
x1=1,x2=1,x3=0 x1=1,x2=1,x3=1

y Emp P HP Emp P HP
0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0
7 0 0 0 0 0 0
8 0 0 0 0 0 0
9 0 0 0 0 0 0
10 0 0 0 0 0 0
11 0 0 0 0 0 0
12 0 0 0 0 0 0
13 0 0 0 0 0 0
14 0 0 0 0 0 0
15 0 0 0 0 0 0
16 0 0 0 0 0 0
17 0 0 0 0 0 0
18 0 0 0 0 0 0
19 0 0 0 0 0 0
20 0 0 0 0 0 0
21 0 0 0 0 0 0
22 0 0 0 0 0 0
23 0 0 0 0 0 0
24 0 0 0 0 0 0
25 0 0 0 0 0 0
26 0 0 0 0 0 0
27 0 0 0 0 0 0
28 0 0 0 0 0 0
29 0 0.0001 0 0 0.0001 0.0001
30 0 0.0001 0.0001 0 0.0001 0.0001
31 0 0.0002 0.0002 0 0.0002 0.0002
32 0.0008 0.0003 0.0003 0.0008 0.0003 0.0003
33 0 0.0005 0.0005 0 0.0005 0.0005
34 0.0008 0.0008 0.0007 0.0008 0.0008 0.0007
35 0.0008 0.0012 0.0011 0.0015 0.0012 0.0011
36 0.0041 0.0018 0.0017 0.0023 0.0018 0.0017
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Table 3.16 Simulation Study: Probabilities (10000
replications) for the true parameter estimates (from
Equation 3.1) using the Empirical, Poisson, and Heaped
Poisson regression models for x1=1, x2=1, x3=0 &
x1=1, x2=1, x3=1 (part B)

Covariate Pattern
x1=1,x2=1,x3=0 x1=1,x2=1,x3=1

y Emp P HP Emp P HP
37 0.0016 0.0026 0.0026 0.0046 0.0027 0.0026
38 0.0041 0.0038 0.0037 0.0038 0.0038 0.0037
39 0.0041 0.0053 0.0052 0.0031 0.0054 0.0052
40 0.0123 0.0073 0.0071 0.0107 0.0073 0.0071
41 0.0049 0.0097 0.0094 0.0061 0.0097 0.0095
42 0.0123 0.0126 0.0123 0.0123 0.0127 0.0124
43 0.0131 0.016 0.0156 0.0115 0.0161 0.0157
44 0.0345 0.0199 0.0194 0.0391 0.0199 0.0196
45 0.0131 0.0241 0.0236 0.01 0.0242 0.0238
46 0.0288 0.0286 0.0281 0.0284 0.0287 0.0283
47 0.0189 0.0332 0.0327 0.0184 0.0333 0.0329
48 0.069 0.0378 0.0373 0.0698 0.0379 0.0375
49 0.037 0.0422 0.0417 0.0391 0.0423 0.0419
50 0.046 0.0461 0.0456 0.046 0.0462 0.0458
51 0.0279 0.0493 0.049 0.0292 0.0494 0.0491
52 0.0715 0.0518 0.0515 0.0767 0.0519 0.0516
53 0.0435 0.0534 0.0532 0.0353 0.0534 0.0533
54 0.0542 0.054 0.0539 0.0537 0.054 0.054
55 0.0386 0.0536 0.0537 0.033 0.0536 0.0537
56 0.0896 0.0523 0.0525 0.089 0.0523 0.0524
57 0.0279 0.0501 0.0504 0.0345 0.0501 0.0503
58 0.0468 0.0472 0.0475 0.0468 0.0471 0.0474
59 0.0288 0.0437 0.0441 0.0284 0.0436 0.044
60 0.0674 0.0398 0.0402 0.066 0.0397 0.0401
61 0.0296 0.0356 0.0361 0.0299 0.0355 0.0359
62 0.0312 0.0314 0.0318 0.0315 0.0313 0.0317
63 0.0164 0.0272 0.0277 0.0146 0.0271 0.0275
64 0.0329 0.0232 0.0237 0.0292 0.0231 0.0235
65 0.014 0.0195 0.0199 0.0207 0.0194 0.0198
66 0.0156 0.0161 0.0165 0.0153 0.0161 0.0164
67 0.0099 0.0132 0.0135 0.0061 0.0131 0.0134
68 0.0164 0.0106 0.0109 0.0215 0.0105 0.0108
69 0.0058 0.0084 0.0086 0.0046 0.0083 0.0085
70 0.0066 0.0065 0.0067 0.0069 0.0065 0.0067
71 0.0016 0.005 0.0052 0.0023 0.005 0.0051
72 0.0082 0.0038 0.0039 0.0077 0.0038 0.0039
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Table 3.17 Simulation Study: Probabilities (10000
replications) for the true parameter estimates (from
Equation 3.1) using the Empirical, Poisson, and Heaped
Poisson regression models for x1=1, x2=1, x3=0 &
x1=1, x2=1, x3=1 (part C)

Covariate Pattern
x1=1,x2=1,x3=0 x1=1,x2=1,x3=1

y Emp P HP Emp P HP
73 0.0025 0.0029 0.003 0.0023 0.0028 0.0029
74 0.0025 0.0021 0.0022 0.0015 0.0021 0.0022
75 0.0008 0.0015 0.0016 0 0.0015 0.0016
76 0.0008 0.0011 0.0011 0.0015 0.0011 0.0011
77 0.0008 0.0008 0.0008 0.0015 0.0008 0.0008
78 0.0008 0.0005 0.0006 0.0008 0.0005 0.0006
79 0 0.0004 0.0004 0 0.0004 0.0004
80 0.0008 0.0003 0.0003 0.0008 0.0003 0.0003
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Table 3.18 Simulation Study: Probabilities (10000 replications) for the
true parameter estimates (shown in Figures 3.8-3.9) using the Observed
Censored and Heaped Censored Poisson regression models

Covariate Pattern
x1=0,x2=0,x3=0 x1=0,x2=0,x3=1

y Obs Censored Heaped Poisson Obs Censored Heaped Poisson
0 0.5347 0.5178 0.5369 0.5182
4 0.6874 0.7159 0.6857 0.7156
8 0.0582 0.0492 0.0586 0.0491
12 0.0008 0.0004 0.0008 0.0004
16 0 0 0 0
20 0 0 0 0
24 0 0 0 0
28 0 0 0 0
32 0 0 0 0
36 0 0 0 0
40 0 0 0 0
44 0 0 0 0
48 0 0 0 0
52 0 0 0 0
56 0 0 0 0
60 0 0 0 0
64 0 0 0 0
68 0 0 0 0
72 0 0 0 0
76 0 0 0 0
80 0 0 0 0
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Table 3.19 Simulation Study: Probabilities (10000 replications) for the
true parameter estimates (shown in Figures 3.10-3.11) using the
Observed Censored and Heaped Censored Poisson regression models

Covariate Pattern
x1=1,x2=0,x3=0 x1=1,x2=0,x3=1

y Obs Censored Heaped Poisson Obs Censored Heaped Poisson
0 0.0332 0.0264 0.0299 0.0264
4 0.3774 0.4203 0.3804 0.4209
8 0.6177 0.6088 0.6179 0.6087
12 0.203 0.1789 0.2028 0.1783
16 0.0186 0.015 0.0185 0.0149
20 0.0008 0.0004 0.0008 0.0004
24 0 0 0 0
28 0 0 0 0
32 0 0 0 0
36 0 0 0 0
40 0 0 0 0
44 0 0 0 0
48 0 0 0 0
52 0 0 0 0
56 0 0 0 0
60 0 0 0 0
64 0 0 0 0
68 0 0 0 0
72 0 0 0 0
76 0 0 0 0
80 0 0 0 0
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Table 3.20 Simulation Study: Probabilities (10000 replications) for the
true parameter estimates (shown in Figures 3.12-3.13) using the
Observed Censored and Heaped Censored Poisson regression models

Covariate Pattern
x1=0,x2=1,x3=0 x1=0,x2=1,x3=1

y Obs Censored Heaped Poisson Obs Censored Heaped Poisson
0 0 0 0 0
4 0 0.0003 0 0.0003
8 0.0104 0.0114 0.0106 0.0114
12 0.1085 0.1034 0.1079 0.1038
16 0.2989 0.3209 0.2987 0.3216
20 0.4232 0.4236 0.4238 0.4235
24 0.2861 0.2734 0.2872 0.2729
28 0.0988 0.0951 0.0974 0.0948
32 0.0216 0.0192 0.0212 0.0191
36 0.0032 0.0024 0.0032 0.0023
40 0 0.0002 0 0.0001
44 0 0 0 0
48 0 0 0 0
52 0 0 0 0
56 0 0 0 0
60 0 0 0 0
64 0 0 0 0
68 0 0 0 0
72 0 0 0 0
76 0 0 0 0
80 0 0 0 0
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Table 3.21 Simulation Study: Probabilities (10000 replications) for the
true parameter estimates (shown in Figures 3.14 & 3.7) using the
Observed Censored and Heaped Censored Poisson regression models

Covariate Pattern
x1=1,x2=1,x3=0 x1=1,x2=1,x3=1

y Obs Censored Heaped Poisson Obs Censored Heaped Poisson
0 0 0 0 0
4 0 0 0 0
8 0 0 0 0
12 0 0 0 0
16 0 0 0 0
20 0 0 0 0
24 0 0 0 0
28 0 0.0001 0 0.0002
32 0.0016 0.0018 0.0016 0.0018
36 0.0114 0.0098 0.013 0.0098
40 0.0377 0.0377 0.036 0.0379
44 0.1018 0.099 0.1013 0.0998
48 0.1997 0.1854 0.2017 0.1864
52 0.2431 0.2532 0.2409 0.2538
56 0.2571 0.258 0.257 0.2578
60 0.2038 0.1997 0.2026 0.1991
64 0.1101 0.1196 0.1113 0.1189
68 0.0543 0.0562 0.0544 0.0558
72 0.0214 0.021 0.0207 0.0208
76 0.0057 0.0063 0.0053 0.0063
80 0.0016 0.0013 0.0016 0.0013
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Figure 3.8 Simulation Study: Covariate Pattern x1 = 0, x2 = 0, and x3 = 0
Censored probabilities
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Figure 3.9 Simulation Study: Covariate Pattern x1 = 0, x2 = 0, and x3 = 1
Censored probabilities
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Figure 3.10 Simulation Study: Covariate Pattern x1 = 1, x2 = 0, and
x3 = 0 Censored probabilities
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Figure 3.11 Simulation Study: Covariate Pattern x1 = 1, x2 = 0, and
x3 = 1 Censored probabilities
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Figure 3.12 Simulation Study: Covariate Pattern x1 = 0, x2 = 1, and
x3 = 0 Censored probabilities

56



www.manaraa.com

0
.1

.2
.3

.4
D

en
si

ty

0 20 40 60 80
y

Censored Observed Heaped Poisson

for x1=0,x2=1,x3=1
Censored Observed vs. Heaped Poisson

Figure 3.13 Simulation Study: Covariate Pattern x1 = 0, x2 = 1, and
x3 = 1 Censored probabilities
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Figure 3.14 Simulation Study: Covariate Pattern x1 = 1, x2 = 1, and
x3 = 0 Censored probabilities
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3.4 Score Test Derivatives for Overdispersion in Heaped Count Data

Models

In this section, we will discuss score test derivations for overdispersion in heaped count

data models. Instead of computing both model when performing a likelihood-ratio

test (LRT), or computing the alternative model only and performing a Wald test,

the score test avoids the computation of the alternative model altogether. We have

developed the first derivatives of our interval-censored regression models to compute

a score test for heaped count regression models.

Score Test Derivatives

Several tests have been proposed to determine the amount of overdispersion in the

Poisson model (Cameron and Trivedi [1986]; Dean and Lawless [1989]). A score test

for overdispersion derived by Yang et al. [2009] based on the GP-2 model is given by

S(β̂) =
1

2n

( n
∑

i=1

(

yi(yi − 1)

µ̂
− yi

))2

which is a χ2
1. Another score test for overdispersion in Poisson model based on the

NB regression model was derived by Cameron and Trivedi [1986] and Dean [1992] is

given by

S(β̂) =
(

∑n
i=1(yi − µ̂i)

2 − yi
√

2
∑n

i=1 µ̂i
2

)2

where µ̂i is the predicted count under the Poisson model.

The score test is also referred to as the Lagrange Multiplier test or the Rao test.

It is the most powerful test when the true value of the parameter is close to the null

value. The main advantage is that its calculation only requires evaluation under the

null hypothesis. In the case of overdispersion tests, this means that one need only

evaluate a Poisson regression model. Using those results, a test of overdispersion can

then be calculated versus other models which allow overdispersion via a dispersion
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parameter α. The test in Poisson regression models is carried out for comparing

H0 : α = 0 versus H1 : α > 0.

It is an extension of the Fisher dispersion test and was formulated from the Taylor

expansion of the loglikelihood. Therefore, for any regression model for which there is

a vector of regression parameters and an additional parameter, we can derive a score

test of that additional dispersion parameter. An advantage of this test is that a model

for which the additional parameter does not need to be estimated. The maximum

likelihood estimation (MLE) of the regression parameters is augmented with zero for

the scalar (α), and that augmented vector is used to evaluate the terms of the test

statistic.

Let the loglikelihood function of the unrestricted model be L(θ) where θ is the

the augmented parameter vector comprised of β, α. The first derivative of the log-

likelihood is written in terms of the partitioned vector as

U(θT ) =
(

∂L
∂θT

)

1×(p+1)

=

[

∂L
∂βT

1×p

∂L
∂αT

1×1

]

(3.2)

where U(θT ) is called the partial score vector. The matrix of second derivatives in

terms of the covariates and associated diagonal weight terms are

(

∂2L
∂θ∂θT

)

(p+1)×(p+1)
=





















∂2L
∂β∂βT

p×p

∂2L
∂β∂αT

p×1

∂2L
∂α∂βT

1×p

∂2L
∂α∂αT

1×1





















(3.3)

This is helpful when estimating the variance through the use of the expected value
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or Fisher information matrix given as

−E



















∂2L
∂β∂βT

∂2L
∂β∂αT

∂2L
∂α∂βT

∂2L
∂α∂αT



















= J (β, α)

=









A(β, α) C(β, α)

C(β, α)T B(β, α)









(3.4)

The inverse of this matrix gives the asymptotic variance of the maximum likelihood

estimate. The estimated variance of Uα(β̂, 0) is the element of the inverse of this

matrix,

B ∗ (β, α) = (B(β, α) − C(β, α)T [A(β, α)]−1C(β, α))−1 (3.5)

which is J (β, α)−1 corresponding to α. The score test is then given by

S = [Uα(β̂, 0)]T B ∗ (β, 0)[Uα(β̂, 0)] (3.6)

where S ∼ χ2
q and q is the dimension of α. The first derivatives of the heaped regres-

sion models and heaped zero-inflated regression models are shown in Appendices A

and B, respectively. The second derivatives for each regression model are extremely

complicated and not necessary to calculate a score test.

Discussion

In literature, score tests are often preferred over LRT and Wald tests due to not

having to compute both models when performing a LRT, or computing the alternative

model only performing a Wald test. Software companies are increasingly starting to

include score test estimates in their software. However, for this research the score test

for heaped overdispersion in regression models has extremely complicated analytic

derivatives and numerical derivatives may be easier to compute.
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Chapter 4

Conclusion

4.1 Summary

This dissertation develops a new method to analyze heaped count data that results

when subjects recall the frequency of events prefer for reporting from a limited set

of rounded responses or preferred digits over reporting exact counts. These rounded

responses and digit preferences (also referred to as data coarsening) could be charac-

terized by reported frequencies (or counts) favoring multiples of 20, reporting counts

ending with 0 or 5, or a preference for reporting an even number over an odd num-

ber. This mixture of values is a type of measurement error (pattern of misreporting)

that can lead to biased estimation and imprecision in discrete qua ntitative data.

Sometimes this pattern in data can be explained or understood, but its effect on the

statistical inference may be harder to anticipate. A visual representation of heaped

data can be seen in a frequency distribution (histogram) where the h eaps are repre-

sented as periodic peaks or spikes within the overall data layout.

We proposed statistical models to model heaped count data using a mixture of like-

lihood functions for heaped and nonheaped count data. We also created new heaped

count data regression commands in Stata statistical software where we considered the

reporte d outcome is actually censored over the half width of the heaping multiple for

heaped count data. We also considered that nonheaped (not censored) data follow

the count distribution’s likelihood for exact counts. The investigator would need to

specify th e heaping multiples over which heaped values are censored via an interval
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regression approach for our new method. We illustrated our new method and Stata

commands for handling heaped count data with two real-world data applications and

one simulation st udy. The average number of cigarettes smoked per day during

the past 30 days as a function of age, gender, and race for 1,504 participants from

NHANES data was studied where we saw heaping at multiples of 5 (half-width of

⌊5/2⌋). We sho wed that by using our interval-censored regression method, based

on the Poisson, GP, and NB models, the heaped versions are more efficient than the

regular versions based on the significant results from the Hausman tests. Then we

investigated self-repor ted frequency of sexual intercourse from the EBAN study of

African American HIV serodiscordant heterosexual couples. We noticed clear heaping

based on the spikeplot of the number of times the participant had sexual intercourse

with their study partner w ithin the past 90 days. Heaping was present at multiples of

5 (half-width of ⌊5/2⌋) and 12 (half-width of ⌊12/2⌋), which may have been a result of

recall or measurement errors. By modeling this data using the heaped zero- inflated

NB regression model may have had an advantage over the regular zero-inflated NB

regression model due to the significant treatment intervention effect. For the sim-

ulation study, we illustrated the effectiveness of our new approach by synthesizin g

heaped Poisson data and fitting the data based on the Poisson regression model and

heaped Poisson regression model. We also compared the empirical (observed), Pois-

son, and heaped Poisson probabilities and based on these probabilities and graphs, as

we ll as the results (Hausman test) from the Poisson and heaped Poisson regression

models, we conclude that the heaped Poisson regression model was a better fit. Fi-

nally, we derived score test derivatives for our interval-censored regression models for

hea ped data and concluded that these models have extremely complicated analytic

derivatives and numerical derivatives may be more appropriate to use.

Some advantages of new method include the following: Non-Bayesian approach,

censorship (probabilistic) covers the heaping interval (half-width), considers all multi-
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ples of heaping, not certain ending digits, use of statistical models and predictions (no

Whipple’s index or Myers’ blended index), no ’set’ heaping mechanism, and no mul-

tiple imputation. However, there are some limitations based on our interval-censored

regression method. One limitation is that our method doesn’t explain when heaping

occurs or who does it and if the investigator specifies too many heaping multiples,

that may create numerical problem in the model convergence.

4.2 Future Work

The purpose of this section is to propose potential future work, which will extend

the materials presented in this dissertation. We plan to explore a method that in-

corporates a modeling component which explains heaping in count data occur and

who does it. In our current proposed method of interval-censored regression, the

censored model converts those heaped values into an interval of possible outcomes

under the assumption that the reported value is actually a multiple of a frequency

from a smaller scale.

In this new approach, we will be able to simultaneously model using another set

of covariates the likelihood of reporting a heaped value to see when heaping in count

data occur and what are the characteristics of those reporters. In this approach,

reported values on heaping multiples are treated as a mixture of exact reports and

interval reports (assumed to be scaled up from a smaller period of time).

Finally, we can include our interval-censored regression method for heaped count

data with other discrete distributions. In future developments, we will address the

generalized negative binomial, zero-inflated generalized negative binomial, Poisson-

inverse gaussian, as well as zero-truncated versions of these distributions.
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Appendix A

1st derivatives of Heaped Distributions

1st derivatives of Heaped Generalized Poisson Distribution

A1 = ΓR(yα− h, µ) − ΓR(yα+ h+ 1, µ)

A2 = ΓR(yα + h+ 1, µ) [ψ(yα+ h+ 1) − log µ]

+ΓR(yα− h, µ) [−ψ(yα− h) + log µ]

MG1 = MeijerG ({{}, {1, 1}}, {{0, 0, yα − h}, {}}, µ)

MG2 = MeijerG ({{}, {1, 1}}, {{0, 0, yα + h+ 1}, {}}, µ)

where ΓR is the gamma regularized function, µ is the link function, ψ is the digamma

function, and h is half-width of heaping interval.

∂L
∂βT

=
1

A1

[

e−µ

(

µyα+h+1

Γ(yα + h+ 1)
− µyα−h

µΓ(yα− h)

)

µ

]

∂L
∂αT

=
y

A1

[

MG1

Γ(yα− h)
+
A2Γ(yα+ h+ 1) −MG2

Γ(yα + h+ 1)

]
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1st derivatives of Heaped Negative Binomial Distribution

B1 = Beta

[

1 + h− y,
1

1 + αµ
, α

]

B2 = Beta

[

−h− y,
1

1 + αµ
, α

]

B3 =
(

(1 + αµ)2Beta(α,
1

1 + αµ
)
)(

BetaR

[

−h+ y, α,
1

1 + αµ

]

−BetaR

[

1 + h+ y, α,
1

1 + αµ

]

)

D1 = −ψ
[

1

1 + αµ

]

+ ψ

[

α+
1

1 + αµ

]

+ Log[−h− y]

D2 = −ψ
[

1

1 + αµ

]

+ ψ

[

α+
1

1 + αµ

]

+ Log[1 + h− y]

H1 = HPFQReg

[{

1

1 + αµ
,

1

1 + αµ
, 1 − α

}

,

{

1 +
1

1 + αµ
, 1 +

1

1 + αµ

}

,−h− y

]

H2 = HPFQReg

[{

1

1 + αµ
,

1

1 + αµ
, 1 − α

}

,

{

1 +
1

1 + αµ
, 1 +

1

1 + αµ

}

, 1 + h− y

]

H3 = HPFQReg

[{

α, α,
αµ

1 + αµ

}

, {1 + α, 1 + α},−h+ y

]

H4 = HPFQReg

[{

α, α,
αµ

1 + αµ

}

, {1 + α, 1 + α}, 1 + h+ y

]

where BetaR is the beta regularized function, µ is the link function, HPFQReg is the

HypergeometricPFQRegularized function, and h is half-width of heaping interval.

∂L
∂βT

=
α

B3

[

(−y − h)
1

1+αµ Γ
(

1

1 + αµ

)2

H1 − (1 − y + h)
1

1+αµ Γ
(

1

1 + αµ

)2

H2

−B2 [D1] +B1 [D2]µ
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∂L
∂αT

=
1

(

BetaR

[

−h+ y, α, 1
1+αµ

]

− BetaR

[

1 + h+ y, α, 1
1+αµ

]

)

[

− (y − h)αΓ(α)2H3 + (1 + y + h)αΓ(α)2H4

Beta
[

α, 1
1+αµ

]

+
1

(1 + αµ)2Beta(α, 1
1+αµ

)µ
[

(−y − h)
1

1+αµ Γ( 1
1+αµ

)2H1 −B2D1

]

− 1

1 + αµ)2Beta(α, 1
1+αµ

)µ
[

(−y + h+ 1)
1

1+αµ Γ( 1
1+αµ

)2H2 −B1D2

]

+ BetaR

[

−h+ y, α,
1

1 + αµ

]

(−ψ(α) + ψ

[

α+
1

1 + αµ

]

+ Log[y − h])

− BetaR

[

1 + h+ y, α,
1

1 + αµ

]

(−ψ(α) + ψ

[

α+
1

1 + αµ

]

+ Log[1 + h− y]
]
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Appendix B

1st derivatives of Heaped Zero-Inflated

Distributions

1st derivatives of Heaped Zero-Inflated Generalized Poisson Distri-

bution

A1 = ΓR(yα− h, µ) − ΓR(yα+ h+ 1, µ)

A2 = ΓR(yα + h+ 1, µ) [ψ(yα+ h+ 1) − log µ]

+ΓR(yα− h, µ) [−ψ(yα− h) + log µ]

MG1 = MeijerG ({{}, {1, 1}}, {{0, 0, yα − h}, {}}, µ)

MG2 = MeijerG ({{}, {1, 1}}, {{0, 0, yα + h+ 1}, {}}, µ)

where ΓR is the gamma regularized function, µ is the link function, ψ is the digamma

function, w is the binary distribution for the probability of a zero outcome, and h is

half-width of heaping interval.

∂L
∂βT

= (− exp(−1 + w)µ) +
1

A1

[

e−µ(1 − w)

(

µyα+h+1

Γ(yα+ h+ 1)
− µyα−h

µΓ(yα− h)

)

µ

]

∂L
∂αT

=
(1 − w)y

A1

[

MG1

Γ(yα− h)
+
A2Γ(yα+ h+ 1) −MG2

Γ(yα + h+ 1)

]
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1st derivatives of Heaped Zero-Inflated Negative Binomial Distribu-

tion

B1 = Beta

[

1 + h− y,
1

1 + αµ
, α

]

B2 = Beta

[

−h− y,
1

1 + αµ
, α

]

B3 =
(

(1 + αµ)2Beta(α,
1

1 + αµ
)
)(

BetaR

[

−h+ y, α,
1

1 + αµ

]

−BetaR

[

1 + h+ y, α,
1

1 + αµ

]

)

D1 = −ψ
[

1

1 + αµ

]

+ ψ

[

α+
1

1 + αµ

]

+ Log[−h− y]

D2 = −ψ
[

1

1 + αµ

]

+ ψ

[

α+
1

1 + αµ

]

+ Log[1 + h− y]

H1 = HPFQReg

[{

1

1 + αµ
,

1

1 + αµ
, 1 − α

}

,

{

1 +
1

1 + αµ
, 1 +

1

1 + αµ

}

,−h− y

]

H2 = HPFQReg

[{

1

1 + αµ
,

1

1 + αµ
, 1 − α

}

,

{

1 +
1

1 + αµ
, 1 +

1

1 + αµ

}

, 1 + h− y

]

H3 = HPFQReg

[{

α, α,
αµ

1 + αµ

}

, {1 + α, 1 + α},−h+ y

]

H4 = HPFQReg

[{

α, α,
αµ

1 + αµ

}

, {1 + α, 1 + α}, 1 + h+ y

]

where BetaR is the beta regularized function, µ is the link function, HPFQReg is the

HypergeometricPFQRegularized function, and h is half-width of heaping interval.

∂L
∂βT

= ((−1 + w)α(−1 + µ)(1 + αµ)−2−
1

αµ)

+
α

B3
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(−y − h)
1
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1
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(

1
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−B2 [D1] +B1 [D2]µ
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∂L
∂αT

= −(−1 + w)µ(1 + αµ)−2−
1

α (α− αµ+ (1 + αµ)Log[1 + αµ])

α

+
(1 − w)
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BetaR

[

−h+ y, α, 1
1+αµ

]

− BetaR
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Beta
[
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]

+
1
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1+αµ

)µ
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(−y − h)
1
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1+αµ

)2H1 −B2D1

]

− 1
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1+αµ

)µ
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1
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)2H2 −B1D2

]
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[
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1
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